CHAPTER 12

Diffusion Problems - Revisited

In Part Il we solved a class of steady state diffusion prolkléon heat conduc

tion equation. In this part, we will concentrate on using $aene techniques

and methods to solve fluid flow problems in which diffusion cdmentum is
dominant.

To build a sound basis for this class of fluid flow problems, wgoduce the non-
dimensional form of the Navier-Stokes equation. Then, wisde measure by which we
can check the weight of the diffusion process in the momergguation.

12.1. NON-DIMENSIONAL NAVIER-STOKES EQUATIONS

The governing equation for incompressible flow of Newtorfiaid is shown in Eqn.(10.9).
To compare the weight of the diffusive and convective terms,need to make these
eguations non-dimensional.

Let us assume that viscous diffusivity (diffusion coeffittig), and thermal diffusivity
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(conductivityx), are both constant. Then Egn.(10.9) can be re-written as:

Continuity equation V-V =0
i 0 <p\7> YAV 2%/
Momentum equation 5 +V. <VVp> =—-Vp+ uV<V (12.1)
0T 1 o
Energy equation — +V - VT = — [xV°T + ]
ot PCyp

Furthermore, let us write these equations in the non-ceasen form of the Eqn.(9.54)

—

V-V=0
%+\7-V\7 - —%vav?\? (12.2)
%—€+V~VT: pichQTericpq

wherev = 2 is the kinematic viscosity of the fluid.

The firsfstep in the non-dimensionalization process is tidgeon the characteristic or
the most important independent variables, i.e., lengthperature, viscosity, etc. These
characteristics are problem dependent. For example, ferifiside a circular duct, the
diameter is the characteristic length and the average ikicsome section would be the
characteristic velocity. For flow over a sphere the charestielength is the outer diameter
of the sphere and the characteristic velocity is the fremastrvelocity.

Let us assume that we have a characteristic lehgtta characteristic velocity, and
a characteristic temperatufg. From the first two characteristic variables we can find the
characteristic time as
Length Lo

Time = . =
Velocity ~ " U,

The number of independent variables and the number of thelimeansional groups
(See Section 9.7) are determined by the use of the dimernsioalgsis and the Buckingham
m-theorem([9].

It is obvious that dividing any variables by its charactiécisalue will result in the
non-dimensional form of that variable, here shown by a stpesscript . In this context
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we may define following non-dimensional variables.

non-dimensional length: xt = I = =1L
0
. . . .V .
non-dimensional velocity: V= i = V=V,
0
. . . t
non-dimensional time: = = t=1t"Lo/Uy (12.3)
Lo /Uy
. . T
non-dimensional temperature: 7" = T = T =TT
0
o 1 0
artial derivative: =—— = V= V
p aZL'* LQ 61‘ LQ

Substituting Eqn.(12.3) into the Navier-Stokes equat{&os.(12.2)) will non-dimensionalize
them.

1. Continuity equation

V*-V* =0 (12.4)
2. Momentum equation
UpLy |OV* . 1 ,
— +V VIV = -V + VPV (12.5)
v ot* “L—O
0

Here, you can convince yourself thgi— has the dimension of pressure, i.e.,
Force/Area. Hence we can define a non-dimensional preggure

oy
po="7— = p" =p/po
0

Then, Eqn.(12.5) can be written as

oV*
ot

Uy Lo

v

+V*. Vv V*] = —V*p* + VIV* (12.6)

Table 9.1 on page 156, shows that the Reynolds NurRbés a dimensionless group

defined by
UoLyg

14

Re =
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Then, Egn.(12.6) can be written as
ov* . .
5 T V*. v*v*] = —V*p* 4+ V*2V* (12.7)

Re

or
ATAN . 1 -
*' * *:_ _ *x %k * * 12.
S+ Vv Re[vp+vv (12.8)

3. Energy equation
Knowing thermal diffusivity is
R
o =—

pey’
then the energy equation can be written as

1 [T
B,—tjuv-vﬂ = VT +

(12.9)

q
apcy

a
Substituting the non-dimensional terms we will have
LoUy [OT* - LoU,
ovo |: + V*. V*T*:| — V*2T* + 0 Oq-
! ot* apc,
. : LoUo . L
Here again you can convince yourself tha? has the same dimensionsgashich

Qapc,
can be defined as the characteristic rate of heat generation
LoUy
Qo =
Qapc,

Then we may write the energy equation as
LoUy [OT* -
« ot*
Table 9.1 shows that the Peclet Numlb&ris a dimensionless group defined by
~ Loy

(%

Pe

That is, we can finally write the energy equation as
ors -
Pe { o T V*. V*T*} = V2T + ¢ (12.10)
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For simplicity we drop all the star superscripts and assuma¢ all the parameters are
non-dimensional, then we might write the non-dimensioralilr-Stokes equations as

—

V.V=0
oV .

VvV = — [—vp+ v V] (12.11)
o

1 9 .
S TV VT = o [V°T + ]
It is important to notice that in the momentum and energy gguns, the left hand sides

include the convective terms and the right hand sides ircthd diffusive terms. Having

the inverse of Reynolds and Peclet numbers as multipliethemight hand side shows
that the higher these numbers are the smaller the diffusivis pnd the more convective
the equations become. The Reynolds and Peclet numbersaretsures which show the
relative weight of diffusion or convection.

12.2. DIFFUSION DOMINATED FLOWS

For diffusion dominated flow, the Reynolds number in the motue equation should be
very small. That is

Re <<'1

In this case, the convective part on the left hand side woelloMershadowed by the viscous
diffusion on the right hand side of the equation; therefdre ¢onvective term may be
dropped.
Re%—j ~ —Vp+ V2V (12.12)

Note that because the time derivative represents the ératnshharacter of the process, not
related to the relative weight of convection or diffusioneaannot drop it. These kinds of
viscous diffusion flows are called low Reynolds number oepreg flows. This equation
is parabolic in time. For steady state cases the equatiarcesdo an elliptic form, i.e.,
diffusion equation, which was the subject of Part Il of thi®k.

Similar approximation can be applied to low Peclet numbergynequation. If

Pe << 1,
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then, the energy equation can be written as
oT
Pe— ~ V*T + g
e BT +q

which is the transient heat conduction equation.
These equations can be written in dimensional form as

’ (;V> ~ - Vp+V- (,NV)
LS picp[v-(WTHq]

(12.13)

(12.14)

(12.15)



CHAPTER 13

Steady State Creeping Flow Examples

In the previous chapter it was pointed out that for steadyous dominated flows,
the Navier-Stokes equations reduce to a set of ellipti@bfitial equations. In
part Il we considered this class of equations for the condangiroblems. In this
chapter we apply the techniques shown in part Il to solvedvmeensional creeping flows.
Creeping flow approximation is useful in many areas of fluichatyics, including
situations in which

¢ the fluid is very viscous, that isis very large, like flow of molasses,
¢ the fluid velocity is very small,

e the characteristic length of the problefy, is very small, like flow around very small
objects or flow in very narrow gaps similar to what we usuaéyig the lubrication.

One can easily imagine many physical problems in which omeany of these conditions
are true.

13.1. TWO-DIMENSIONAL VORTICITY-STREAM FUNCTION FORMULATION

The momentum equation, in its vorticity-stream functiomipwas derived in Chapterl1.
The steady state form of this equation, as well as the equsta the stream function and
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the relation between stream function and vorticity aretemias

Viw=0 (13.1)

VU = —w (13.2)
ov ov

u = a—y, and v = —% (133)

Mathematically, Eqn.(13.2) is a simple diffusion equatsamilar to the heat conduction
equation. In this equation instead of heat, momentum isiskid.

The solution strategy to solve this system of equationsas#me as the one explained
in Chapter 11 as

1. Solve Egn.(13.1) for the vorticity,
2. Solve Eqn.(13.3) for the stream functign
3. Solve Egns.(11.1) and (11.2) for the velocitiesndv

The integral form of Egn.(13.1) is exactly similar to the €ad heat conduction equation.
That is, similar to Egn.( 7.24 on page 66), we can write

Oow Ow Oow Ow _
A () —a () 44, () —a (P AV = 13.4
<ax> ”“”(ax)ﬁ ”<6y)n S(ay)s” v=0o (134

This equation states that for any control volume the neusiffn of momentum (in the
form of vorticity) across the faces plus the amount of momengenerated or destructed
inside that control volume should be zero.

Using a linear profile to approximate the derivatives.adtw, e, n ands, we will have

ox 0Ly
ow)  (wg—wp)
Ae (8_‘%‘)6 - Ae (Sl'e
Ow (wy — wp)
A, =) =A4A
! (&y)n " Oyn
A, (8_w) _ ASM (13.5)
Y/ 0Ys
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Then, similar to Eqn.(7.25), we can write

apwp = Z AppWnp + b (13.6)
nb
where
_ Ay
ar = Az,
_ Ay
aw = Az,
Ax
B Ax
Y7 A,
b= ScAxAy

ap = Z App — SPA.I'Ay
nb

13.2. TWO-DIMENSIONAL LID-DRIVEN CAVITY CREEPING FLOW

Example 13.1Two-Dimensional Lid-Driven Cavity Creeping Flow

Consider a two-dimensional square cavity filled with an mpoessible fluid as shown in
Figure 13.1. A steady creeping fluid motion is generatediahe cavity by the slid of the
infinitely long top lid at a constant velocity,. Since there is no fluid squeezed out of the
cavity below the moving plate, the momentum, or vorticitgngrated at the upper wall is
diffused into the fluid forming closed path patterns withie tavity. We want to find this
pattern.

From the hydrodynamics point of view, this problem représensimplified model of
complicated flow phenomena like recirculating flows in thierication process or flow in
micro-structures.

Working with non-dimensional equations, we may assumeideedf the cavity isl x 1
and the sliding velocity i$/; = 1
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w=0 uza—wzl v=0
=T e 8y U=1
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Figure 13.1: Two Dimensional Lid-Driven Cavity CreepingpWl

13.2.1. Simplified Staggered Grid

The regular approach of single grid will create some diftieslin these problems. Here,
vorticity and velocities are given in terms of the derivaswf stream function. With a
regular grid for vorticity, stream function and velocit@s the faces of the control volumes
should be approximated. Such an approximation will inczehs errors.

A convenient way to get around these complications is towsdlifferent grids. The
first grid is our regular grid. We use this grid for the vortyciThe second grid is staggered
towards left to coincide with the boundaries of the cont@uwmes. This grid is used for
the stream function. This is a simple model of the staggernes gvhich will be used later
in solving convective-diffusive flows.

On this basis, we find the vorticity by solving a conservabdbmomentum. Then, the
stream function can be found by solving the Poisson Equatisimg a finite difference
method. Notice that the values of the stream function arersé¢he second grid. Finally,
having the stream function, we can find the velocities from.EB.2).

To distinguish between the two grids, the grid for vorticggyndexed byi and; and the
second grid by and.J. The west walls of the cavity will be defined By= 1 andJ = 1.
Assuming a uniform grid witl\z = Ay = h, the grids can be presented as in Figure 13.2.
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Figure 13.2: Lid-Driven Cavity Grids

13.2.2. The Integral Equations

The governing equations are shown in Eqns.(13.1) and (1372 vorticity equation
(Eqn.(13.1)) is exactly like the heat conduction equatidihis is an elliptic differential
equation and the value of the vorticity should be preassigmeall boundaries. Hence, the
integral equation given in the Eqn.(7.25) can be used here.

13.2.3. Boundary condition

Assigning the vorticity on the walls is not always straightward. Here we find the
vorticity on the walls by the use of Eqn.(13.3) as follows

1. The north wall
A schematic drawing of a typical north boundary grids is shawrFigure 13.3.

The vorticity on the north wall is given by

P N v
Wi 4 - = 9.2 2
Jmaz+1 0x? O0y? iy Jmac+t1
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1+1
i-1 i +1

1+1/2

Figure 13.3: Cavity Grids-North

Itis clear, from Figure 13.3, that the north control voluraaesindexed byi, j,a. +1)
and the north wall by + 1/2, J,,... + 1). Then we can write

(62111 N 82\If>
Wn=—\551t—55

al‘2 ayQ I+1/27Jmaz+1
On the wall, we can assume

1
W :a (wnw + wne) =

82\11 82111 aQ\I/ 82\11
rv v ow  owv 13.
(5 5),, - (Geee), | o

First, let us consider the vorticity &f, .J,,.. + 1), we have

0*v N 0*W
Wpw = — | 55 a 5
ax2 ay2 Imeaac+1

Itis not difficult to show that if we use the Taylor’s seriepaxsion for the right-hand
side terms, we can get a proper difference equation:[10]:

1
T2

1
2

8 2
wnw (_\Illlyc]maz _'_ gqjlﬂj’maz - \I]I+17Jmllz __\I]I“]mazil

3

2 [0V
e 13.9
3h ( ay >[7Jmaz+1 ( )



13.2. TWO-DIMENSIONAL LID-DRIVEN CAVITY CREEPING FLOW 179

ov
(—) = uq = Uy =1,
W ) 1 Jmani

Eqn.(13.9) can be written as

Knowing

1 8 2 2
W = 2 <—‘~I’11,Jmm + g\I’LJmM — Wit Jae — g\I’LJmar1 e Iy
(13.10)
Similarly we can write:
1 8 2 2
Wne = e (—\I’LJmM + g\I]IJrl,Jmaz — V142 Jee — g‘I’IH,JmmA BT Iy
(13.11)
Then, Eqn.(13.8) can be written as
1
Wn = 5 I+ =T, (13.12)

2. The west wall
The grids on the west wall is shown in Figure 13.4.

h/2 1
[

=1 h =

Figure 13.4: Cavity Grids-West

Here we are looking for
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Using the same method, we can write

1 8 2
Wsw = 75 | —Vou-1+ 7Yy —Wo s — Vs, ) =175 (13.13)
h 3 3
and
1 8 2
Wpw = e -y 5+ g\IIQ,JJrl — Wy 1o — 5‘1’3,”1 =1y (13.14)
Then we have
1
Wo = 5 s +Ty =T (13.15)

3. The east wall

The grids on the east wall are shown in Figure 13.5.

|
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Figure 13.5: Cavity Grids-East

Here, we need to find

1

We = 5 (wse + wne)



