
CHAPTER 12

Diffusion Problems - Revisited

I In Part II we solved a class of steady state diffusion problems for heat conduc
tion equation. In this part, we will concentrate on using thesame techniques
and methods to solve fluid flow problems in which diffusion of momentum is

dominant.

To build a sound basis for this class of fluid flow problems, we introduce the non-
dimensional form of the Navier-Stokes equation. Then, we define a measure by which we
can check the weight of the diffusion process in the momentumequation.

12.1. NON-DIMENSIONAL NAVIER-STOKES EQUATIONS

The governing equation for incompressible flow of Newtonianfluid is shown in Eqn.(10.9).
To compare the weight of the diffusive and convective terms,we need to make these
equations non-dimensional.

Let us assume that viscous diffusivity (diffusion coefficient µ), and thermal diffusivity
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168 CHAPTER 12. DIFFUSION PROBLEMS - REVISITED

(conductivityκ), are both constant. Then Eqn.(10.9) can be re-written as:

Continuity equation ∇ · ~V = 0

Momentum equation
∂
(

ρ~V
)

∂t
+∇ ·

(

~V~Vρ
)

= −∇p + µ∇2 ~V (12.1)

Energy equation
∂T

∂t
+ ~V · ∇T =

1

ρcp

[
κ∇2T + q̇

]

Furthermore, let us write these equations in the non-conservation form of the Eqn.(9.54)

∇ · ~V = 0

∂ ~V

∂t
+ ~V · ∇~V = −

1

ρ
∇p+ ν∇2 ~V (12.2)

∂T

∂t
+ ~V · ∇T =

κ

ρcp
∇2T +

1

ρcp
q̇

whereν =
µ

ρ
is the kinematic viscosity of the fluid.

The first step in the non-dimensionalization process is to decide on the characteristic or
the most important independent variables, i.e., length, temperature, viscosity, etc. These
characteristics are problem dependent. For example, for flow inside a circular duct, the
diameter is the characteristic length and the average velocity at some section would be the
characteristic velocity. For flow over a sphere the characteristic length is the outer diameter
of the sphere and the characteristic velocity is the free stream velocity.

Let us assume that we have a characteristic lengthL0, a characteristic velocityU0 and
a characteristic temperatureT0. From the first two characteristic variables we can find the
characteristic time as

Time=
Length
Velocity

⇒ t0 =
L0

U0

The number of independent variables and the number of the non-dimensional groups
(See Section 9.7) are determined by the use of the dimensional analysis and the Buckingham
π-theorem[9].

It is obvious that dividing any variables by its characteristic value will result in the
non-dimensional form of that variable, here shown by a star superscript . In this context
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we may define following non-dimensional variables.

non-dimensional length: x∗ =
x

L0
⇒ x = x∗L0

non-dimensional velocity: V ∗ =
V

U0
⇒ V = V ∗U0

non-dimensional time: t∗ =
t

L0/U0
⇒ t = t∗L0/U0 (12.3)

non-dimensional temperature: T ∗ =
T

T0
⇒ T = T ∗T0

partial derivative:
∂∗

∂x∗
=

1

L0

∂

∂x
⇒ ∇∗ =

1

L0
∇

Substituting Eqn.(12.3) into the Navier-Stokes equations(Eqn.(12.2)) will non-dimensionalize
them.

1. Continuity equation
∇∗ · ~V∗ = 0 (12.4)

2. Momentum equation

U0L0

ν

[

∂ ~V∗

∂t∗
+ ~V∗ · ∇∗ ~V∗

]

= −
1

µU0

L0

∇∗p+∇∗2 ~V∗ (12.5)

Here, you can convince yourself that
µU0

L0
has the dimension of pressure, i.e.,

Force/Area. Hence we can define a non-dimensional pressurep0

p0 =
µU0

L0

⇒ p∗ = p/p0

Then, Eqn.(12.5) can be written as

U0L0

ν

[

∂ ~V∗

∂t∗
+ ~V∗ · ∇∗ ~V∗

]

= −∇∗p∗ +∇∗2 ~V∗ (12.6)

Table 9.1 on page 156, shows that the Reynolds NumberRe is a dimensionless group
defined by

Re =
U0L0

ν
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Then, Eqn.(12.6) can be written as

Re

[

∂ ~V∗

∂t∗
+ ~V∗ · ∇∗ ~V∗

]

= −∇∗p∗ +∇∗2 ~V∗ (12.7)

or
∂ ~V∗

∂t∗
+ ~V∗ · ∇∗ ~V∗ =

1

Re

[

−∇∗p∗ +∇∗2 ~V∗
]

(12.8)

3. Energy equation

Knowing thermal diffusivity is

α =
κ

ρcp
,

then the energy equation can be written as

1

α

[
∂T

∂t
+ ~V · ∇T

]

= ∇2T +
1

αρcp
q̇ (12.9)

Substituting the non-dimensional terms we will have

L0U0

α

[
∂T ∗

∂t∗
+ ~V∗ · ∇∗T ∗

]

= ∇∗2T ∗ +
L0U0

αρcp
q̇

Here again you can convince yourself that
L0U0

αρcp
has the same dimensions asq̇ which

can be defined as the characteristic rate of heat generation

q0 =
L0U0

αρcp

Then we may write the energy equation as

L0U0

α

[
∂T ∗

∂t∗
+ ~V∗ · ∇∗T ∗

]

= ∇∗2T ∗ + q̇∗

Table 9.1 shows that the Peclet NumberPe is a dimensionless group defined by

Pe =
L0U0

α

That is, we can finally write the energy equation as

Pe

[
∂T ∗

∂t∗
+ ~V∗ · ∇∗T ∗

]

= ∇∗2T ∗ + q̇∗ (12.10)
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For simplicity we drop all the star superscripts and assume that all the parameters are
non-dimensional, then we might write the non-dimensional Navier-Stokes equations as

∇ · ~V = 0

∂ ~V

∂t
+ ~V · ∇~V =

1

Re

[

−∇p +∇2 ~V
]

(12.11)

∂T

∂t
+ ~V · ∇T =

1

Pe

[
∇2T + q̇

]

It is important to notice that in the momentum and energy equations, the left hand sides
include the convective terms and the right hand sides include the diffusive terms. Having
the inverse of Reynolds and Peclet numbers as multipliers onthe right hand side shows
that the higher these numbers are the smaller the diffusive parts and the more convective
the equations become. The Reynolds and Peclet numbers are the measures which show the
relative weight of diffusion or convection.

12.2. DIFFUSION DOMINATED FLOWS

For diffusion dominated flow, the Reynolds number in the momentum equation should be
very small. That is

Re << 1

In this case, the convective part on the left hand side would be overshadowed by the viscous
diffusion on the right hand side of the equation; therefore the convective term may be
dropped.

Re
∂~V

∂t
≈ −∇p +∇2 ~V (12.12)

Note that because the time derivative represents the transient character of the process, not
related to the relative weight of convection or diffusion, one cannot drop it. These kinds of
viscous diffusion flows are called low Reynolds number or creeping flows. This equation
is parabolic in time. For steady state cases the equation reduces to an elliptic form, i.e.,
diffusion equation, which was the subject of Part II of this book.

Similar approximation can be applied to low Peclet number energy equation. If

Pe << 1,
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then, the energy equation can be written as

Pe
∂T

∂t
≈ ∇2T + q̇ (12.13)

which is the transient heat conduction equation.
These equations can be written in dimensional form as

∂
(

ρ~V
)

∂t
≈ −∇p +∇ ·

(

µ∇~V
)

(12.14)

∂T

∂t
≈

1

ρcp
[∇ · (κ∇T ) + q̇] (12.15)



CHAPTER 13

Steady State Creeping Flow Examples

I In the previous chapter it was pointed out that for steady viscous dominated flows,
the Navier-Stokes equations reduce to a set of elliptic differential equations. In
part II we considered this class of equations for the conduction problems. In this

chapter we apply the techniques shown in part II to solve two-dimensional creeping flows.
Creeping flow approximation is useful in many areas of fluid dynamics, including

situations in which

• the fluid is very viscous, that isν is very large, like flow of molasses,

• the fluid velocity is very small,

• the characteristic length of the problem,L0, is very small, like flow around very small
objects or flow in very narrow gaps similar to what we usually get in the lubrication.

One can easily imagine many physical problems in which one ormany of these conditions
are true.

13.1. TWO-DIMENSIONAL VORTICITY-STREAM FUNCTION FORMULA TION

The momentum equation, in its vorticity-stream function form, was derived in Chapter11.
The steady state form of this equation, as well as the equations for the stream function and
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the relation between stream function and vorticity are written as

∇2ω = 0 (13.1)

∇2Ψ = −ω (13.2)

u =
∂Ψ

∂y
, and v = −

∂Ψ

∂x
(13.3)

Mathematically, Eqn.(13.2) is a simple diffusion equationsimilar to the heat conduction
equation. In this equation instead of heat, momentum is diffused.

The solution strategy to solve this system of equations is the same as the one explained
in Chapter 11 as

1. Solve Eqn.(13.1) for the vorticityω,

2. Solve Eqn.(13.3) for the stream functionψ,

3. Solve Eqns.(11.1) and (11.2) for the velocitiesu andv

The integral form of Eqn.(13.1) is exactly similar to the case of heat conduction equation.
That is, similar to Eqn.( 7.24 on page 66), we can write

Ae

(
∂ω

∂x

)

e

−Aw

(
∂ω

∂x

)

w

+ An

(
∂ω

∂y

)

n

− As

(
∂ω

∂y

)

s

+ S̄∆∀ = 0 (13.4)

This equation states that for any control volume the net diffusion of momentum (in the
form of vorticity) across the faces plus the amount of momentum generated or destructed
inside that control volume should be zero.

Using a linear profile to approximate the derivatives ofω atw, e, n ands, we will have

Aw

(
∂ω

∂x

)

w

= Aw
(ωP − ωW )

δxw

Ae

(
∂ω

∂x

)

e

= Ae
(ωE − ωP )

δxe

An

(
∂ω

∂y

)

n

= An
(ωN − ωP )

δyn

As

(
∂ω

∂y

)

s

= As
(ωP − ωS)

δys
(13.5)
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Then, similar to Eqn.(7.25), we can write

aPωP =
∑

nb

anbωnb + b (13.6)

where

aE =
∆y

∆xe

aW =
∆y

∆xw

aN =
∆x

∆yn
(13.7)

aS =
∆x

∆ys
b = SC∆x∆y

aP =
∑

nb

anb − SP∆x∆y

13.2. TWO-DIMENSIONAL LID-DRIVEN CAVITY CREEPING FLOW

Example 13.1Two-Dimensional Lid-Driven Cavity Creeping Flow
Consider a two-dimensional square cavity filled with an incompressible fluid as shown in
Figure 13.1. A steady creeping fluid motion is generated inside the cavity by the slid of the
infinitely long top lid at a constant velocityU0. Since there is no fluid squeezed out of the
cavity below the moving plate, the momentum, or vorticity, generated at the upper wall is
diffused into the fluid forming closed path patterns within the cavity. We want to find this
pattern.
From the hydrodynamics point of view, this problem represents a simplified model of
complicated flow phenomena like recirculating flows in the lubrication process or flow in
micro-structures.
Working with non-dimensional equations, we may assume the size of the cavity is1 × 1
and the sliding velocity isU0 = 1
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Figure 13.1: Two Dimensional Lid-Driven Cavity Creeping Flow

13.2.1. Simplified Staggered Grid

The regular approach of single grid will create some difficulties in these problems. Here,
vorticity and velocities are given in terms of the derivatives of stream function. With a
regular grid for vorticity, stream function and velocitieson the faces of the control volumes
should be approximated. Such an approximation will increase the errors.

A convenient way to get around these complications is to use two different grids. The
first grid is our regular grid. We use this grid for the vorticity. The second grid is staggered
towards left to coincide with the boundaries of the control volumes. This grid is used for
the stream function. This is a simple model of the staggered grids which will be used later
in solving convective-diffusive flows.

On this basis, we find the vorticity by solving a conservationof momentum. Then, the
stream function can be found by solving the Poisson Equation, using a finite difference
method. Notice that the values of the stream function are seton the second grid. Finally,
having the stream function, we can find the velocities from Eqn.(13.2).

To distinguish between the two grids, the grid for vorticityis indexed byi andj and the
second grid byI andJ . The west walls of the cavity will be defined byI = 1 andJ = 1.
Assuming a uniform grid with∆x = ∆y = h, the grids can be presented as in Figure 13.2.
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Figure 13.2: Lid-Driven Cavity Grids

13.2.2. The Integral Equations

The governing equations are shown in Eqns.(13.1) and (13.2). The vorticity equation
(Eqn.(13.1)) is exactly like the heat conduction equation.This is an elliptic differential
equation and the value of the vorticity should be preassigned on all boundaries. Hence, the
integral equation given in the Eqn.(7.25) can be used here.

13.2.3. Boundary condition

Assigning the vorticity on the walls is not always straight forward. Here we find the
vorticity on the walls by the use of Eqn.(13.3) as follows

1. The north wall

A schematic drawing of a typical north boundary grids is shown in Figure 13.3.

The vorticity on the north wall is given by

ωi,jmax+1
= −

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

i,jmax+1
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Figure 13.3: Cavity Grids-North

It is clear, from Figure 13.3, that the north control volumesare indexed by(i, jmax+1)
and the north wall by(I + 1/2, Jmax + 1). Then we can write

ωn = −

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

I+1/2,Jmax+1

On the wall, we can assume

ωn =
1

2
(ωnw + ωne) =

−
1

2

[(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

I,Jmax+1

+

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

I+1,Jmax+1

]

(13.8)

First, let us consider the vorticity at(I, Jmax + 1), we have

ωnw = −

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

I,Jmax+1

It is not difficult to show that if we use the Taylor’s series expansion for the right-hand
side terms, we can get a proper difference equation:[10]:

ωnw =
1

h2

(

−ΨI−1,Jmax
+

8

3
ΨI,Jmax

−ΨI+1,Jmax
−
2

3
ΨI,Jmax−1

)

−
2

3h

(
∂Ψ

∂y

)

I,Jmax+1

(13.9)
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Knowing
(
∂Ψ

∂y

)

I,Jmax+1

= ulid = U0 = 1,

Eqn.(13.9) can be written as

ωnw =
1

h2

(

−ΨI−1,Jmax
+

8

3
ΨI,Jmax

−ΨI+1,Jmax
−

2

3
ΨI,Jmax−1

)

−
2

3h
= Γ1

(13.10)
Similarly we can write:

ωne =
1

h2

(

−ΨI,Jmax
+

8

3
ΨI+1,Jmax

−ΨI+2,Jmax
−

2

3
ΨI+1,Jmax−1

)

−
2

3h
= Γ2

(13.11)
Then, Eqn.(13.8) can be written as

ωn =
1

2
[Γ1 + Γ2] = Γn (13.12)

2. The west wall

The grids on the west wall is shown in Figure 13.4.

Figure 13.4: Cavity Grids-West

Here we are looking for

ωw =
1

2
(ωnw + ωsw)
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Using the same method, we can write

ωsw =
1

h2

(

−Ψ2,J−1 +
8

3
Ψ2,J −Ψ2,J+1 −

2

3
Ψ3,J

)

= Γ3 (13.13)

and

ωnw =
1

h2

(

−Ψ2,J +
8

3
Ψ2,J+1 −Ψ2,J+2 −

2

3
Ψ3,J+1

)

= Γ4 (13.14)

Then we have

ωw =
1

2
[Γ3 + Γ4] = Γw (13.15)

3. The east wall

The grids on the east wall are shown in Figure 13.5.

Figure 13.5: Cavity Grids-East

Here, we need to find

ωe =
1

2
(ωse + ωne)


